Efficient Block Sampling Strategies for Sequential Monte Carlo Methods

نویسندگان

  • Arnaud DOUCET
  • Mark BRIERS
  • Stéphane SÉNÉCAL
چکیده

Sequential Monte Carlo (SMC) methods are a powerful set of simulation-based techniques for sampling sequentially from a sequence of complex probability distributions. These methods rely on a combination of importance sampling and resampling techniques. In a Markov chain Monte Carlo (MCMC) framework, block sampling strategies often perform much better than algorithms based on one-at-a-time sampling strategies if “good” proposal distributions to update blocks of variables can be designed. In an SMC framework, standard algorithms sequentially sample the variables one at a time whereas, like MCMC, the efficiency of algorithms could be improved significantly by using block sampling strategies. Unfortunately, a direct implementation of such strategies is impossible as it requires the knowledge of integrals which do not admit closed-form expressions. This article introduces a new methodology which bypasses this problem and is a natural extension of standard SMC methods. Applications to several sequential Bayesian inference problems demonstrate these methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sequential Monte Carlo Approach to Computing Tail Probabilities in Stochastic Models

Sequential Monte Carlo methods which involve sequential importance sampling and resampling are shown to provide a versatile approach to computing probabilities of rare events. By making use of martingale representations of the sequential Monte Carlo estimators, we show how resampling weights can be chosen to yield logarithmically efficient Monte Carlo estimates of large deviation probabilities ...

متن کامل

Lookahead Strategies for Sequential Monte Carlo

Based on the principles of importance sampling and resampling, sequential Monte Carlo (SMC) encompasses a large set of powerful techniques dealing with complex stochastic dynamic systems. Many of these systems possess strong memory, with which future information can help sharpen the inference about the current state. By providing theoretical justification of several existing algorithms and intr...

متن کامل

A new proof of geometric convergence for general transport problems based on sequential correlated sampling methods

In [J. Halton, Sequential Monte Carlo, Proc. Comb. Phil. Soc. 58 (1962), J. Halton, Sequential Monte Carlo Techniques for the Solution of Linear Systems, J. Sci. Comp. 9 (1994) 213-257] Halton introduced a strategy to be used in Monte Carlo algorithms for the efficient solution of certain matrix problems. We showed in [R. Kong, J. Spanier, Sequential correlated sampling methods for some transpo...

متن کامل

Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation

Methods of Approximate Bayesian computation (ABC) are increasingly used for analysis of complex models. A major challenge for ABC is over-coming the often inherent problem of high rejection rates in the accept/reject methods based on prior:predictive sampling. A number of recent developments aim to address this with extensions based on sequential Monte Carlo (SMC) strategies. We build on this h...

متن کامل

An Efficient Sequential Monte Carlo Algorithm for Coalescent Clustering

We propose an efficient sequential Monte Carlo inference scheme for the recently proposed coalescent clustering model [1]. Our algorithm has a quadratic runtime while those in [1] is cubic. In experiments, we were surprised to find that in addition to being more efficient, it is also a better sequential Monte Carlo sampler than the best in [1], when measured in terms of variance of estimated li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006